Do the rules apply in school?

This week is focused on what happens in schools, including classification, service receipt and new interventions.  How an educational classification translates to a clinical diagnosis, how and what factors are important in receiving services, what teachers think about repetitive behaviors and finally, a new intervention that can be delivered by therapists in school or mental health settings.  They all have real-life consequences for kids who are receiving services in school.

 

https://www.ncbi.nlm.nih.gov/pubmed/30892948

https://www.ncbi.nlm.nih.gov/pubmed/30848681

https://www.ncbi.nlm.nih.gov/pubmed/30889547

https://jamanetwork.com/journals/jamapsychiatry/article-abstract/2727134

 

Autism spectrum disorders underneath a bigger umbrella: more data from the brain

There is demonstrated genetic overlap between many neurodevelopment disorders including  ASD, ADHD, and schizophrenia, and now there is data showing similarities in the structure and size of the brains in people with autism and those with ADHD.  These differences depend on how severe social difficulties are, but the similarities are seen with ASD and ADHD, but not OCD.   In addition, this week there are new depressing results from the Interactive Autism Network on unemployment and females with ASD.  The results may not surprise you, but they will upset you.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6361977/

https://www.ncbi.nlm.nih.gov/pubmed/30729799

 

 

Can IGF-1 treat autism symptoms? A clinical trial aims to find out

A full transcript of this podcast episode can be read on the ASF blog here.

Researchers at Mount Sinai led by Alex Kolevzon are running a clinical trial of the compound insulin-like growth factor 1 (IGF-1) for children with idiopathic autism. Dr. Kolevzon’s team previously demonstrated the safety and feasibility of IGF-1 in treating Phelan-McDermid syndrome, a single-gene form of autism. Particularly, the IGF-1 treatment improved symptoms of social impairment and repetitive behaviors, which are core symptoms of autism. Expanding their investigation into idiopathic autism, the researchers are working hard to make sure families can comfortably and knowledgeably participate in the clinical trial. Mahir Rahman spoke with Dr. Kolevzon about the study and where it hopes to go. Interested in joining the study? Go here to learn more.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4326443/

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4450831/

What are PCOS and DDT, and what do they have to do with autism?

Two new studies came out this week that implicates the role of the endocrine system in autism.  The endocrine system which regulates hormones in your body, also has a key role in brain development early on in fetal and child development.   PCOS is a metabolic condition and DDT is a toxic chemical banned years ago, but both are linked to the endocrine system, both are bad for many reasons, and both are linked to autism.  These studies provide evidence that we should #savetheEPA and be aware of medical and environmental factors which do not cause, but contribute to autism.  Also, PCOS is linked to autism in adult women, so ladies – if you show signs of PCOS, please talk to a doctor!

PCOS study:  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6068102/  

DDT study:  https://ajp.psychiatryonline.org/doi/pdf/10.1176/appi.ajp.2018.17101129

PCOS blog:  https://www.rmanj.com/lifting-the-fog-on-polycystic-ovary-syndrome-pcos/

http://www.panna.org/resources/ddt-story

 

PMS: it’s not what you think

Last weekend, the Phelan McDermid Research Foundation held their biannual family conference in Dallas Texas.  People with Phelan McDermid Syndrome, or PMS, suffer from seizures and intellectual disability, and about 70% have an ASD diagnosis, Over 150 families from across the world came together to show each other support, learn about housing options, receive genetic counseling, talk to experts and hear the latest research.  ASF attended the meeting and this podcast is a short summary of what was presented by researchers at the conference.  This syndrome is caused by mutations of the SHANK3 gene, which is present in about 1% of people with autism, making it the most common single genetic influence of ASD.  Even if you don’t have a mutation in SHANK3, many of the issues affecting those with PMS may apply to you.  To learn more about the conference, click here:  https://www.pmsf.org/ifc/

Reusing and recycling autism data from brain tissue

In a new study in animal models, researchers demonstrate how genetic variability in key risk genes leads to different brain development patterns.  Studying the brains of people with autism is challenging, since there are fewer resources to study.  However, scientists get creative and collaborative and re-analyze datasets previously published to look at different research questions.  That’s what happened this week in a collaboration between Brown University and UCLA, showing that as the activity of genes which controls the synapse goes down, so do genes affecting mitochondrial function.  Another brain tissue study showed that the stress of the endoplasmic reticulum, which is associated with the mitochondria, may be elevated.  Not all research data can be re-purposed again, which is why it is so important to study the brains of people with autism.  If you would like to learn more, go to www.takesbrains.org/signup

 

https://www.ncbi.nlm.nih.gov/pubmed/29859039

https://www.ncbi.nlm.nih.gov/pubmed/29761862

https://www.ncbi.nlm.nih.gov/pubmed/29901787

https://www.ncbi.nlm.nih.gov/pubmed/29926239

Here’s to understanding why people with autism have anxiety in adolescence

Using resources from the Autism BrainNet, researchers from UC Davis show specific brain changes in an area called the amygdala in autism.  The amygdala is associated with fear, emotion and anxiety in people with autism.  But because they can look at the brain directly,  the actual number of neurons in the amygdala can be counted not just in one individual, but in over 50 individuals across ages 2 to 50.  This remarkable study showed that too much activity in the amygdala early may lead to impaired function later on.  This could be caused by too many neurons which are present early on in life in people with ASD, and reflected by fewer neurons later on in life.  These difference can only be detected through looking directly at brain tissue.  To learn more, register for the Autism BrainNet at www.takesbrains.org/signup.

Here is a link to the paper:  http://www.pnas.org/content/early/2018/03/19/1801912115.long

Dr. Avino will be answering questions about this paper on a Q&A on April 9, 2018 – please register here:  https://register.gotowebinar.com/register/7051754498195523073

Commonly used drugs that may help autism

Sometimes treatment targets come from the places you wouldn’t expect.  This week, three new studies on the biological and sometimes, behavioral, effects of three commonly used compounds used to treat high cholesterol, edema, and angina were studied in people with autism.  Instead of focusing on just the behavior however, these studies took the approach of examining them from the behavioral side, determining if there was a biological reason why these compounds should be helping people with autism.  This means autism research has turned a corner – it’s not just about behavioral improvements, but about how the drug is working in the brain.  Also, a fun study about social media in people with autism.  They don’t just use it like the rest of us, it actually makes people with autism happy.

Here are the studies included in this week’s podcast:

https://www.ncbi.nlm.nih.gov/pubmed/29485900

https://www.ncbi.nlm.nih.gov/pubmed/29484909

https://www.ncbi.nlm.nih.gov/pubmed/29484149

 

https://www.ncbi.nlm.nih.gov/pubmed/29483603

 

Chromosome 15-apallooza

One of areas of genetic interest of autism is a region of chromosome 15.  Only about 3% of people with autism have the mutation, but 80% of those with the mutation have autism.  It is so important that people with duplications of this area have formed their own advocacy group called the Dup15 Alliance.  I was honored to attend their family an scientific meeting and give a summary of what scientists have learned about autism through studying this chromosome, how kids with this mutation and autism are similar and different from those with autism but not the mutation, how the families are managing life threatening seizures, what the gene does, what the brains look like, and how mutations of this chromosome do in fact interact with the environment.  Thank you to the scientists who study this area and the very brave, selfless and amazing parents who I talked to.

Post zygotic mutations in autism: what you need to know

Yes, another type of mutation in autism was revealed this week.  Those that are evident after the sperm and egg meet to form the zygote but still very early, during embryonic development.  Because it occurs after the original zygote is formed, the mutation is not found in every cell or every region of the body, called post-zygotic.  A collaboration of three major genetic consortia studied and collaborated on these types of mutations and revealed that they consist of about 7.5% of all de novo mutations in people with autism.  They affect autism risk genes and selectively target brain regions associated with autism.  Learn more about what this means for family planning and cognitive ability in people with autism.