Biology of profound and non-profound autism

Scientists have spent a lot of time trying to understand the biology of autism, unfortunately in the past, scientific studies had everyone with autism lumped together in one group and there are so many differences between people with a diagnosis that any features of the diagnosis itself were hard to detect. In the past, researchers grouped those who are cognitively abled with those who have average or superior intellectual disability, those who are able to express themselves verbally with those who cannot, and those who need 24-hour care with those who can live independently. This week, researchers changed that pattern of lumping all the autisms together by using profound autism as a subgroup and as a way to determine differences across autism subgroups. Researchers at @UCSD examined the cell sizes and the brain sizes of individuals with profound autism and compared them to those with non-profound autism. They found the larger the brain cell, the larger the brain size in different areas, and the more profound the autism. There were differences between profound autism, non-profound autism and typically developing controls. This is just a first step in using different classifications of behavior to understand the neurobiology of ASD and link brain function to autism behaviors, leading to more specific support for those across the spectrum.

https://molecularautism.biomedcentral.com/articles/10.1186/s13229-024-00602-8#Sec26

Research for the end of Autism Action Month

In honor of the last week of Autism Awareness/Acceptance Month, we review two new scientific findings that call for more awareness and action, and less acceptance of the status quo. First: sex differences in autism are not well understood, and as it turns out, the influences on a diagnosis are different. Males have a higher rate of heritability compared to females. Second, those with rare genetic disorders have very few options for treatment, but a new study promises hope for more personalized approaches. The researchers use Timothy Syndrome as an example of how cells can start to function properly through a targeted approach which focuses on a small part of a gene. This is potentially life saving for individuals with this disorder.

https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/38630491/

https://www.nature.com/articles/s41586-024-07310-6

Genetic confounding plus organoids

You heard it in the news this week, and we discuss it on this week’s ASF podcast. Can you make little brains in a dish then make them better by providing them a real structured live neural environment? Can these organoids integrate with a live brain and be functional in vivo? The answers are: yes! Learn more from a new study published this week. Also, what the h**l is genetic confounding and how can it address many of the controversies of genetic vs. the environment? Sometimes genes that predispose to a disorder also predispose to environmental factors leading to that disorder. There is always room for both. Here are the links I promised:

https://www.fhi.no/en/studies/moba/

https://pubmed.ncbi.nlm.nih.gov/35793100/

https://www.nature.com/articles/s41586-022-05277-w