Genetics does not equal eugenics

Sometimes when the autism community hears the words “genetics research”, it conjures up images of using genetics to eliminate people with autism. In fact, that’s not the goal of genetics research, nor is it even possible. Recently, several new studies were publish which illustrate how genetics can be used to help people understand their diagnosis, and receive more targeted supports. Special guest Jonathan Sebat from UCSD provides perspective on these findings and why genetics research is misunderstood.

https://pubmed.ncbi.nlm.nih.gov/35654973/

https://pubmed.ncbi.nlm.nih.gov/35654974/

https://www.genome.gov/event-calendar/irreducible-subjects-disability-and-genomics-in-the-past-present-and-future

A new type of genetic mutation in ASD

On today’s ASF podcast, ASF funded researcher Ileena Mitra from the lab of Dr. Melissa Gymrek at UCSD will explain a new type of “de novo” genetic mutation. Those are those spontaneous mutation that happen in kids with ASD but not parents or family members. So where did they come from? Well, this study looks at a mutation that affects tandem repeats, which are those repeating DNA sequences: CGG CGG CGG CGG. A newly built bioinformatics platform showed that these mutations may account for 1.6% of simplex (one person in the family is affected). Likely we are going to hear more about these types of mutations in ASD, so listen to the scientist explain the science herself!

https://www.nature.com/articles/s41586-020-03078-7

Help for those with minimal verbal ability

On this week’s ASF weekly science podcast, we provide a recent review on influences of speech and language both in those with ASD who are verbally fluent, as those who have minimal verbal ability. What does the brain look like in those with minimal verbal ability and are there interventions to help improve social communication ability in those with not just minimal verbal ability but also cognitive disability? What are some early markers or behaviors that predict understanding and communicating? Listen to learn more.

https://pubmed.ncbi.nlm.nih.gov/32909382/

https://pubmed.ncbi.nlm.nih.gov/32881387/

https://pubmed.ncbi.nlm.nih.gov/32827357/

https://pubmed.ncbi.nlm.nih.gov/32812191/

What sperm tells scientists about the origins of ASD

Does autism begin at a diagnosis, or before a diagnosis?  How early do genetics influence outcome?  This podcast explores a new angle to this question using studies in sperm.  One type of major ASD relevant mutation is de-novo mutations, meaning they are seen in the person with ASD but neither biological parent.  So where do they come from?  They may come from germ cells of the embryo of the parent, which forms the sperm and the egg.  Researchers from UCSD looked at mutations in sperm vs. blood in fathers of those with de-novo mutations and found an enrichment of genetic mutations in sperm.  This means the window of susceptibility can include not just things that happen at conception, but before conception.  Below is a graphic taken from a commentary of this study in Nature by Eric Morrow which may be helpful.