Research for the end of Autism Action Month

In honor of the last week of Autism Awareness/Acceptance Month, we review two new scientific findings that call for more awareness and action, and less acceptance of the status quo. First: sex differences in autism are not well understood, and as it turns out, the influences on a diagnosis are different. Males have a higher rate of heritability compared to females. Second, those with rare genetic disorders have very few options for treatment, but a new study promises hope for more personalized approaches. The researchers use Timothy Syndrome as an example of how cells can start to function properly through a targeted approach which focuses on a small part of a gene. This is potentially life saving for individuals with this disorder.

https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/38630491/

https://www.nature.com/articles/s41586-024-07310-6

Little Brains Answer Big Questions

This week we talk to Sergiu Pasca from Stanford University. He has revolutionized the field of understanding the field of brain development in neurodevelopmental disorders and just published a new study which examined the genetic influence of brain assembly. The way he does this is quite remarkable. His lab uses assembloids, which are many many many stem cells which form into a tiny brain. He explains what an interneuron is, why it is important for brain function, and how genetics can influence how these neurons work. This way the development of the brain from the first cell can be tracked and even manipulated to understand what happens in autism, and what therapies might be the most helpful to target these interneurons. Thank you Dr. Pasca.

Open access! https://pubmed.ncbi.nlm.nih.gov/37758944/

Genetic confounding plus organoids

You heard it in the news this week, and we discuss it on this week’s ASF podcast. Can you make little brains in a dish then make them better by providing them a real structured live neural environment? Can these organoids integrate with a live brain and be functional in vivo? The answers are: yes! Learn more from a new study published this week. Also, what the h**l is genetic confounding and how can it address many of the controversies of genetic vs. the environment? Sometimes genes that predispose to a disorder also predispose to environmental factors leading to that disorder. There is always room for both. Here are the links I promised:

https://www.fhi.no/en/studies/moba/

https://pubmed.ncbi.nlm.nih.gov/35793100/

https://www.nature.com/articles/s41586-022-05277-w