The Transcription Factor Song

Very rarely are scientists able to look at single genes within the brains of people across neuropsychiatric disorders and understand how the genes in each of these cells influence expression of proteins and interactions of different cells with each other. Recently, a collaboration called PsychENCODE released a series of papers that investigated what genes are expressed in what cells in autism in different situations, how cells that communicate interact with more support or glial cells, and what mechanisms are in place to identify ways in which the broad environment (chemicals, contextual factors, illness) may influence gene expression leading to disorders like autism, schizophrenia and bipolar disorder. This podcast summarizes these papers as they are related to autism – ore at least tries to.

https://www.psychencode.org/phase-ii

Top reasons to study the autistic brain

There are dozens of good reasons why scientists need to study the brains of people with autism. One is to understand what happens in the brain as people with autism get older and see how the brain changes over time. Another is to identify mechanisms of autism to help all neuroscientists figure out how the brain works. A third is improve medicine by determining what helps what people at what age. Scientists @UCDavis, @Penn and @UCLA examined the individual brain cells of people with autism to address these three questions, revealing that the autistic brain shows some similarities to brains of people with Alzheimer’s Disease. In addition, inflammation seen in the brain may be caused by too much activity of cells talking to each other. Studying the brains of people with autism is essential to better understanding and is made possible by families who are committed to research. www.autismbrainnet.org.

https://pubmed.ncbi.nlm.nih.gov/36862688/

The 2019 Year End Summary

What more appropriate podcast to end 2019 with than the summary of advances of scientific research of autism spectrum disorders?   The SAB of ASF and the CSO categorized the highlights in science into 8 categories which are outlined in this 30 minute podcast.  You can also read them on the ASF website here.  Thank you for listening to the ASF Weekly Science Podcast in 2019, and talk to you in 2020!

The 2018 Year in Review: A spectrum within a spectrum

There were a number of exciting advances in scientific understanding autism in 2018.  These include things that we know to be true, and know to be not true.  Researchers made progress in identifying subgroups of ASD, defining biological markers, and developing  interventions. There were also research that demonstrates that while autism is a spectrum itself, it is also part of a bigger spectrum of neurodevelopmental disorders from anxiety to ADHD to OCD.  Therefore, the approaches to these other conditions may be applicable to ASD. In addition, there may be more similarities than differences in the biological features of these conditions.

This is just a sampling of the exciting research presented on this year’s Year in Review.  You can also read the full summary, complete with references, HERE.

Gamma waves and autism brains

Gamma waves are brainwave activity at a certain speed and have been linked to consciousness and seem to help coordinate activity in different parts of the brain.  They have also been associated with processing of information, including sensory information.  This week, researchers at Oxford University led by Dr. David Menassa explore gamma waves in the brains of autistic adults who perform better on a visual processing task than those without a diagnosis.  Gamma waves are controlled by the coordinated activity of neurons in the brain, which are regulated by inhibitory interneurons which make sure excitatory neurons aren’t taking over.  In a study using brain tissue of people with autism, it was found by another study at Oxford that there are fewer of these inhibitory interneurons to control this activity.  Dr. David Menassa provides his own interpretation of the data on this week’s podcast.

Chromosome 15-apallooza

One of areas of genetic interest of autism is a region of chromosome 15.  Only about 3% of people with autism have the mutation, but 80% of those with the mutation have autism.  It is so important that people with duplications of this area have formed their own advocacy group called the Dup15 Alliance.  I was honored to attend their family an scientific meeting and give a summary of what scientists have learned about autism through studying this chromosome, how kids with this mutation and autism are similar and different from those with autism but not the mutation, how the families are managing life threatening seizures, what the gene does, what the brains look like, and how mutations of this chromosome do in fact interact with the environment.  Thank you to the scientists who study this area and the very brave, selfless and amazing parents who I talked to.

To see differences in the brains of males and females with autism, you have to look at the brains of males and females with autism

Last month, UC Davis researcher Cyndi Schumann used resources for the Autism BrainNet to look at what causes differences in the rates of diagnosis between males and females.  Consistent with other studies on this topic, males and females don’t show differences in the rates of autism genes, but rather in the way that the brain controls other genes that code for things like neuroinflammation and development.  Clearly more studies are necessary but it is consistent with the Female Protective Effect in autism.  The full text can be found here:  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5294827/

And also, there was a study on genital herpes and autism that CNN got totally wrong.

Autism and Epilepsy – a brain tissue perspective

On October 14th, the Autism BrainNet hosted it’s first webinar around how brain tissue findings affect people with autism.  First, Shafali Jeste, MD, from UCLA explained what seizures were, how prevalent they were in people with autism, and what the risk factors for them were in ASD.  Next, David Menassa from Oxford University described recent findings in brain tissue which showed how glia cells, or the cells of the brain that support neurons, are affected in ASD and how epilepsy affects these changes.  The introduction of the webinar is missing but only for a few seconds.   Thank you to Drs. Jeste and Menassa for participating in such a great informational event and for everyone that registered.

Environment or genetics in autism symptomatology? How about both?

This week I am in Minneapolis at an incredibly important meeting of Medical Examiners to pitch them the importance of collecting brain tissue for Autism BrainNet.  While I was here I noticed a new study on the blogs that is important for families to hear about.  It focused on a known environmental exposure in established genetic groups.  The authors of the study, led by Dr. Sara Webb at University of Washington, showed that an environmental exposure can modify symptoms in genetically susceptible narrow subgroups.  This is the sort of research that will better describe how environmental exposures are affecting autism risk.   Thank you to Dr. Sara Webb for your perspectives and interpretation of the data!