And now….the 2016 year end summary of autism science

The year 2016 was eventful for many reasons.  In this 20 minute podcast, we review some of the scientific discoveries that highlighted findings in causes, understanding, and treating ASD.  Featured more this year is studies on the sibling of individuals with ASD, so we are calling 2016 “The Year of the Sibling”  This review includes genetics, gene x environment interactions, diagnosis, the broader autism phenotype, and early interventions and the role of parent-delivered interventions in long term outcome.  It also highlights the important role of studying brain tissue from individuals with autism to better understand people with autism across the lifespan, including those with known causes and unknown causes of ASD.  We hope you find it informative – please send comments to ahalladay@autismsciencefoundation.org

What we know about autism by looking in the brain

On December 13, 2016, Dr. Matthew Anderson from Beth Isreal Deaconess Medical Center presented a 45 minute webinar on recent findings in autism thanks to studying the brains of people with autism.  It covers genetics, neuropathology and immunology.  It’s a great chance to hear a quick recap of findings from an Autism BrainNet node director.  Please click above to watch the 45 minute presentation and questions from the audience.   Most importantly, anyone can be a part of this important research by registering to learn more about the Autism BrainNet at www.takesbrains.org. 


 

Another gene that causes autism and what families are doing about it

A gene that controls electrical activity in the brain, SCN2A, has been linked to autism for awhile.  But recently, a new study from China shows that mutations of this gene are seen in about 1% of people with autism.  This may put it into the category of the rare mutations that have a major contribution to autism symptoms.   In addition to autism, mutations of these gene are associated with seizures and epilepsy.  Because of the relatively high rates of mutations of this gene in autism and epilepsy, an amazing group of motivated families formed an organization to help support and awareness for this gene mutation.  This week’s podcast includes a message from one of the leaders of this foundation:  FamileSCN2A who are dedicated to help their children with the knowledge about their child’s genetic makeup.

Precision medicine presents: OXYTOCIN!!!

Overall, the scientific research examining the efficacy of oxytocin treatment in autism spectrum disorder has been mixed.  On a previous podcast, studies in the way the oxytocin receptor was turned on and off were explained which may account for variability in treatment response.  This week, two studies in Japan show that specific mutations in the oxytocin receptor product predict who will respond to oxytocin treatment and who will not.  Therefore, the oxytocin story is one of the first examples of using genetic findings to push better treatment on an individual level, otherwise known as precision medicine.

Autism and Epilepsy – a brain tissue perspective

On October 14th, the Autism BrainNet hosted it’s first webinar around how brain tissue findings affect people with autism.  First, Shafali Jeste, MD, from UCLA explained what seizures were, how prevalent they were in people with autism, and what the risk factors for them were in ASD.  Next, David Menassa from Oxford University described recent findings in brain tissue which showed how glia cells, or the cells of the brain that support neurons, are affected in ASD and how epilepsy affects these changes.  The introduction of the webinar is missing but only for a few seconds.   Thank you to Drs. Jeste and Menassa for participating in such a great informational event and for everyone that registered.

Environment or genetics in autism symptomatology? How about both?

This week I am in Minneapolis at an incredibly important meeting of Medical Examiners to pitch them the importance of collecting brain tissue for Autism BrainNet.  While I was here I noticed a new study on the blogs that is important for families to hear about.  It focused on a known environmental exposure in established genetic groups.  The authors of the study, led by Dr. Sara Webb at University of Washington, showed that an environmental exposure can modify symptoms in genetically susceptible narrow subgroups.  This is the sort of research that will better describe how environmental exposures are affecting autism risk.   Thank you to Dr. Sara Webb for your perspectives and interpretation of the data!

What came first? Impaired social behaviors or something else that changes social behavior?

This week is a more philosophical, ideological discussion of the origins of social behaviors inspired by review articles written by Mayada Elsabbagh at McGill University and Boaz Barak and Guoping Feng at MIT. The focus of these papers are: when social behaviors emerge, and what brain regions are responsible for their existence. While Dr. Elsabbagh thinks of the question in terms of when behaviors and symptoms emerge in infancy, Drs. Barak and Feng consider the issue by comparing autism to Williams Syndrome. Williams Syndrome is very similar to autism except people with WS are hyper social and empathetic and sometimes gregarious. One tiny change on one area of one gene makes all the difference. This podcast doesn’t settle the question, but hopefully shows you listeners why there is a debate and how it is important for people with autism.

Autism genes that are seen in everyone

This was a very genetics-centric week because of two exciting new publications that focused on genetic risk factors.  In the first, Dr. William Brandler at UCSD demonstrates that mutations in autism risk genes come in all sorts of different forms, but they must be in the right genes to lead to a diagnosis.  Just having different mutations is not enough. Also,  in an intriguing analysis led by Dr. Elise Robinson at the Broad Institute (and also summarized on SpectrumNews), she looked at these autism risk genes in people without autism and found that we all have them.  Reiterating what Dr. Brandler found, she showed that the spectrum of autism genetics may be broader than the spectrum of an autism diagnosis.  It may explain symptoms of autism without a diagnosis in family members as well.

Regression in autism, down to the neuron

On Friday, February 19, the NIH organized a workshop on regression in autism.  It included autism researchers as well as neurobiologists studying regression in other disorders, specifically Rett Syndrome.  Rett Syndrome is characterized by a regression in symptoms around 18-30 months of age but is the result of a known genetic mutation.  Because the genetic mutation is know, researchers have been able to make huge advancements in the study of the cellular causes of regression.  Do they apply to autism?  The theory of overturning is presented and discussed in the workshop and on the podcast.  You can see the full agenda at:  https://iacc.hhs.gov/non-iacc-events/2016/loss-of-skill-agenda-february19.shtml

Here are some screen shots of the workshop:

 

Screen Shot 2016-02-19 at 10.59.01 AMScreen Shot 2016-02-19 at 10.40.33 AM

A year of autism research in under 30 minutes

What was impactful this year in autism research? This last podcast of 2015 explores the year of the female, highlighting the relatively new exploration into what makes females with ASD different and what they can tell us about everybody with autism and their families.  Some of what is discussed was highlighted in other podcasts, but not all of it.   The summary is organized so that what may initially be interpreted as small, nonsignificant discoveries, are viewed as progress.  Everything from genetics to getting laws passed is included.