The waterbed around your brain (and its role in sleep)

This week we have a very special guest:  Dr. Mark Shen from University of North Carolina at Chapel Hill, who has been leading the field in understanding the role that the fluid around the brain in autism.  This week he expands his research to show that this increase in extra – axial (around the brain) fluid is not limited to those with a family history of autism, and is seen both before and after a diagnosis.  This has implications for early detection of ASD, but more interesting, it may help explain why some people with autism have so many sleep issues.

Can IGF-1 treat autism symptoms? A clinical trial aims to find out

A full transcript of this podcast episode can be read on the ASF blog here.

Researchers at Mount Sinai led by Alex Kolevzon are running a clinical trial of the compound insulin-like growth factor 1 (IGF-1) for children with idiopathic autism. Dr. Kolevzon’s team previously demonstrated the safety and feasibility of IGF-1 in treating Phelan-McDermid syndrome, a single-gene form of autism. Particularly, the IGF-1 treatment improved symptoms of social impairment and repetitive behaviors, which are core symptoms of autism. Expanding their investigation into idiopathic autism, the researchers are working hard to make sure families can comfortably and knowledgeably participate in the clinical trial. Mahir Rahman spoke with Dr. Kolevzon about the study and where it hopes to go. Interested in joining the study? Go here to learn more.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4326443/

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4450831/

PMS: it’s not what you think

Last weekend, the Phelan McDermid Research Foundation held their biannual family conference in Dallas Texas.  People with Phelan McDermid Syndrome, or PMS, suffer from seizures and intellectual disability, and about 70% have an ASD diagnosis, Over 150 families from across the world came together to show each other support, learn about housing options, receive genetic counseling, talk to experts and hear the latest research.  ASF attended the meeting and this podcast is a short summary of what was presented by researchers at the conference.  This syndrome is caused by mutations of the SHANK3 gene, which is present in about 1% of people with autism, making it the most common single genetic influence of ASD.  Even if you don’t have a mutation in SHANK3, many of the issues affecting those with PMS may apply to you.  To learn more about the conference, click here:  https://www.pmsf.org/ifc/

Reusing and recycling autism data from brain tissue

In a new study in animal models, researchers demonstrate how genetic variability in key risk genes leads to different brain development patterns.  Studying the brains of people with autism is challenging, since there are fewer resources to study.  However, scientists get creative and collaborative and re-analyze datasets previously published to look at different research questions.  That’s what happened this week in a collaboration between Brown University and UCLA, showing that as the activity of genes which controls the synapse goes down, so do genes affecting mitochondrial function.  Another brain tissue study showed that the stress of the endoplasmic reticulum, which is associated with the mitochondria, may be elevated.  Not all research data can be re-purposed again, which is why it is so important to study the brains of people with autism.  If you would like to learn more, go to www.takesbrains.org/signup

 

https://www.ncbi.nlm.nih.gov/pubmed/29859039

https://www.ncbi.nlm.nih.gov/pubmed/29761862

https://www.ncbi.nlm.nih.gov/pubmed/29901787

https://www.ncbi.nlm.nih.gov/pubmed/29926239

Here’s to understanding why people with autism have anxiety in adolescence

Using resources from the Autism BrainNet, researchers from UC Davis show specific brain changes in an area called the amygdala in autism.  The amygdala is associated with fear, emotion and anxiety in people with autism.  But because they can look at the brain directly,  the actual number of neurons in the amygdala can be counted not just in one individual, but in over 50 individuals across ages 2 to 50.  This remarkable study showed that too much activity in the amygdala early may lead to impaired function later on.  This could be caused by too many neurons which are present early on in life in people with ASD, and reflected by fewer neurons later on in life.  These difference can only be detected through looking directly at brain tissue.  To learn more, register for the Autism BrainNet at www.takesbrains.org/signup.

Here is a link to the paper:  http://www.pnas.org/content/early/2018/03/19/1801912115.long

Dr. Avino will be answering questions about this paper on a Q&A on April 9, 2018 – please register here:  https://register.gotowebinar.com/register/7051754498195523073

Loss of skills in autism partially explained

Is regression a sudden loss of previously acquired skills or is it the gradual decline in a particular area of function?  Using the right tools, both parents and clinicians can document the gaining and loss of skills in different areas, and they agree on what they see.  However, rather than being a single event, regression is slow, starting at around 12 months and showing continual declines through diagnosis.  Thanks to an NIMH day long symposium on the biological causes of regression, scientists got together to discuss this loss of skills on a biological level.  They think that the decline or loss of skills is due to biological events that disrupt the formation of specific brain circuits at critical times in development.  This can be because neurons stop developing, or maybe the brain goes overboard in shaping and pruning back connections.  If you want to see the amazing full day of presentations that aired in 2016, click here:  https://videocast.nih.gov/Summary.asp?file=19500&bhcp=1.  A link to the Ozonoff study described in the podcast is here:  https://www.ncbi.nlm.nih.gov/pubmed/29524310

Commonly used drugs that may help autism

Sometimes treatment targets come from the places you wouldn’t expect.  This week, three new studies on the biological and sometimes, behavioral, effects of three commonly used compounds used to treat high cholesterol, edema, and angina were studied in people with autism.  Instead of focusing on just the behavior however, these studies took the approach of examining them from the behavioral side, determining if there was a biological reason why these compounds should be helping people with autism.  This means autism research has turned a corner – it’s not just about behavioral improvements, but about how the drug is working in the brain.  Also, a fun study about social media in people with autism.  They don’t just use it like the rest of us, it actually makes people with autism happy.

Here are the studies included in this week’s podcast:

https://www.ncbi.nlm.nih.gov/pubmed/29485900

https://www.ncbi.nlm.nih.gov/pubmed/29484909

https://www.ncbi.nlm.nih.gov/pubmed/29484149

 

https://www.ncbi.nlm.nih.gov/pubmed/29483603

 

Another groundbreaking study thanks to brain tissue

The media accurately described a recent study from Dan Geschwind’s lab at UCLA as “groundbreaking”.  That’s because the findings help people with autism better understand how and why their symptoms are different to other mental conditions, specifically bipolar depression and schizophrenia.  It turns out the gene expression patterns in the brains of people with autism are similar to those with bipolar depression and schizophrenia, but not alcoholism or major depression.   It also offers hope for a more accurate biological signature of autism that can be distinguished from bipolar depression and schizophrenia.    Below is a graph that represents these different profiles, and if you want to read a version of the article that is available online (but before it was peer reviewed in the journal Science) you can find it here: https://www.biorxiv.org/content/biorxiv/early/2016/02/18/040022.full.pdf Gandal

The causes of social communication deficits in ASD

This week, former ASF fellow Katherine Stavropoulos from UC Riverside and Leslie Carver published data investigating what is the core cause of social communication deficits in autism.  Do people with autism show deficits in this area because they have a lack of motivation for social cues, or are social interactions just too overwhelming on their senses?  It turns out, both are true and this has direct implications for intervention methods.  Also, parents and siblings of people with autism show subtle symptoms of ASD without having a diagnosis.  This is called the broader autism phenotype, and a study by the Study to Explore Early Development led by Dr. Eric Rubenstein, demonstrated that parents of children with a particular group of symptoms are more likely to show this phenotype than other groupings.  You can read the full studies here:

 

https://molecularautism.biomedcentral.com/articles/10.1186/s13229-018-0189-5

https://www.ncbi.nlm.nih.gov/pubmed/29376397

 

Gamma waves and autism brains

Gamma waves are brainwave activity at a certain speed and have been linked to consciousness and seem to help coordinate activity in different parts of the brain.  They have also been associated with processing of information, including sensory information.  This week, researchers at Oxford University led by Dr. David Menassa explore gamma waves in the brains of autistic adults who perform better on a visual processing task than those without a diagnosis.  Gamma waves are controlled by the coordinated activity of neurons in the brain, which are regulated by inhibitory interneurons which make sure excitatory neurons aren’t taking over.  In a study using brain tissue of people with autism, it was found by another study at Oxford that there are fewer of these inhibitory interneurons to control this activity.  Dr. David Menassa provides his own interpretation of the data on this week’s podcast.