What the h**l is an induced pluripotent stem cell?

The words “induced pluripotent stem cell” refer to a group of cells that are gathered from a person with a disorder, like autism, then changed or “induced” from a skin cell into an embryonic “stem” cell, and can be then made into baby brain cells, or baby heart cells or baby bone cells. This makes them “pluripotent”. This tool has been used in neurodevelopment disorders to help illustrate when the wiring of the brain starts to go off course. Things start to happen very early after conception and one of the only ways to study these things is by using either embryonic cells or these induced embryonic “stem cells”. The latter is more cost effective and more precise. This technology has an incredibly high potential in understanding autism, but it may never be used as a treatment. Nevertheless, knowing how and when brain development deviates is essential for understanding people with ASD.

https://link.springer.com/content/pdf/10.1007%2F978-3-030-45493-7.pdf

The latest on marijuana and autism across the globe

Since the ASF policy statement on marijuana for the treatment of ASD was published this summer, there have been some new scientific studies that may be of interest to families.  As it turns out CBD has opposite effects in the brains of people with autism compared to those without autism, meaning that it is absolutely essential that more research is done specifically in people across the spectrum in ASD.  Also, early studies in Israel and Brazil are showing some positive effects on behavior, but they are open label non controlled compassionate use basis studies, which in encouraging, but the science needs to be more rigorous and more studies need to be done in people with autism using standardized autism assessments if any progress is to be made.  Luckily a new study at NYU is enrolling for just that approach.  Please contact Latoya.King@nyulangone.edu if you want to learn more about that.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6732821/

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6784992/

https://www.ncbi.nlm.nih.gov/pubmed/31736860

https://www.ncbi.nlm.nih.gov/pubmed/30382443

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6336869/

 

 

PMS: it’s not what you think

Last weekend, the Phelan McDermid Research Foundation held their biannual family conference in Dallas Texas.  People with Phelan McDermid Syndrome, or PMS, suffer from seizures and intellectual disability, and about 70% have an ASD diagnosis, Over 150 families from across the world came together to show each other support, learn about housing options, receive genetic counseling, talk to experts and hear the latest research.  ASF attended the meeting and this podcast is a short summary of what was presented by researchers at the conference.  This syndrome is caused by mutations of the SHANK3 gene, which is present in about 1% of people with autism, making it the most common single genetic influence of ASD.  Even if you don’t have a mutation in SHANK3, many of the issues affecting those with PMS may apply to you.  To learn more about the conference, click here:  https://www.pmsf.org/ifc/

Reusing and recycling autism data from brain tissue

In a new study in animal models, researchers demonstrate how genetic variability in key risk genes leads to different brain development patterns.  Studying the brains of people with autism is challenging, since there are fewer resources to study.  However, scientists get creative and collaborative and re-analyze datasets previously published to look at different research questions.  That’s what happened this week in a collaboration between Brown University and UCLA, showing that as the activity of genes which controls the synapse goes down, so do genes affecting mitochondrial function.  Another brain tissue study showed that the stress of the endoplasmic reticulum, which is associated with the mitochondria, may be elevated.  Not all research data can be re-purposed again, which is why it is so important to study the brains of people with autism.  If you would like to learn more, go to www.takesbrains.org/signup

 

https://www.ncbi.nlm.nih.gov/pubmed/29859039

https://www.ncbi.nlm.nih.gov/pubmed/29761862

https://www.ncbi.nlm.nih.gov/pubmed/29901787

https://www.ncbi.nlm.nih.gov/pubmed/29926239

Here’s to understanding why people with autism have anxiety in adolescence

Using resources from the Autism BrainNet, researchers from UC Davis show specific brain changes in an area called the amygdala in autism.  The amygdala is associated with fear, emotion and anxiety in people with autism.  But because they can look at the brain directly,  the actual number of neurons in the amygdala can be counted not just in one individual, but in over 50 individuals across ages 2 to 50.  This remarkable study showed that too much activity in the amygdala early may lead to impaired function later on.  This could be caused by too many neurons which are present early on in life in people with ASD, and reflected by fewer neurons later on in life.  These difference can only be detected through looking directly at brain tissue.  To learn more, register for the Autism BrainNet at www.takesbrains.org/signup.

Here is a link to the paper:  http://www.pnas.org/content/early/2018/03/19/1801912115.long

Dr. Avino will be answering questions about this paper on a Q&A on April 9, 2018 – please register here:  https://register.gotowebinar.com/register/7051754498195523073

Commonly used drugs that may help autism

Sometimes treatment targets come from the places you wouldn’t expect.  This week, three new studies on the biological and sometimes, behavioral, effects of three commonly used compounds used to treat high cholesterol, edema, and angina were studied in people with autism.  Instead of focusing on just the behavior however, these studies took the approach of examining them from the behavioral side, determining if there was a biological reason why these compounds should be helping people with autism.  This means autism research has turned a corner – it’s not just about behavioral improvements, but about how the drug is working in the brain.  Also, a fun study about social media in people with autism.  They don’t just use it like the rest of us, it actually makes people with autism happy.

Here are the studies included in this week’s podcast:

https://www.ncbi.nlm.nih.gov/pubmed/29485900

https://www.ncbi.nlm.nih.gov/pubmed/29484909

https://www.ncbi.nlm.nih.gov/pubmed/29484149

 

https://www.ncbi.nlm.nih.gov/pubmed/29483603

 

Chromosome 15-apallooza

One of areas of genetic interest of autism is a region of chromosome 15.  Only about 3% of people with autism have the mutation, but 80% of those with the mutation have autism.  It is so important that people with duplications of this area have formed their own advocacy group called the Dup15 Alliance.  I was honored to attend their family an scientific meeting and give a summary of what scientists have learned about autism through studying this chromosome, how kids with this mutation and autism are similar and different from those with autism but not the mutation, how the families are managing life threatening seizures, what the gene does, what the brains look like, and how mutations of this chromosome do in fact interact with the environment.  Thank you to the scientists who study this area and the very brave, selfless and amazing parents who I talked to.

Brain tissue: what has it done for autism lately?

In order to ensure that researchers have enough brain tissue to understand autism spectrum disorders, the education and outreach campaign is being expanded past families to doctors and professionals that have access to tissue.  One of these groups is neuropathologists.  At their annual meeting this past week in Los Angeles, and entire afternoon was spent dedicated to autism and the features of autism in the brain.  A summary of the presentations is included in this podcast. Speakers emphasized that the way the brain works in childhood is not the same way it works in adulthood, and a study out of UCSD showed that the genes that are affected in children with autism are different than those in adults with autism.  The mechanisms of genes controlling the developing brain vs. those which affect ongoing maintenance are different.  This calls to make sure scientists understand all ages of people with autism, because as the brain changes, so do the needs of people with ASD.

Memorial Day Memoriam: Isabelle Rapin

This week, autism lost a pioneer and advocate for autism research:  Isabelle Rapin, MD, a neurologist from New York’s Albert Einstein University.  The first part of the podcast is a brief summary of her accomplishments.  The second part is an study called “how to keep your child out of the hospital”, presenting a recent study which looked at risk factors for being an inpatient, rather than an outpatient.    These risk factors may not be able to be prevented, but hopefully through identification of what they are, situations might be managed to help those with autism and their families during a crisis situation.

 

 

The infant brain on early behavioral intervention

The brain is developing even after birth.  So interventions that are given very early have the best chance of remolding and rewiring a brain with autism to prevent autism related disabilities.  This week, a group from the University of London, Duke University and University of Washington measured brain activity during tasks that required social attention following 2 months of very very very early intervention.  They found that the way the brain responded to social stimuli was more like those without an autism diagnosis.  This study shows a biological marker of brain function is altered after behavioral interventions that are intended to do just that – change the way the brain functions.