How do you solve a problem like aggression?

Irritability and aggression are dangerous behaviors that can lead to harm and injury and are overlooked in research. Unfortunately there are only two FDA medications approved to treat them in autism. The drugs have many side effects, and there are efforts to improve these treatments and minimize side effects by lowering the dose with adjunct therapies that enhance the efficacy of the drug. So far, there are a few promising leads, but nothing that is ready for the clinic. How do scientists make the move from an interesting discovery in a lab to testing the safety and efficacy of a drug? Through animal models or model systems that examine different phenotypes in an animal and test medications on outcomes like aggression. Mice are not people, but they are necessary to ensure safe and effective treatments are translated into practice.

https://pubmed.ncbi.nlm.nih.gov/38263251/

Speak now

Those who are minimally verbal or non speaking represent about 25% of those with an autism diagnosis, yet there is really a lack of effective interventions for this group of autistic individuals. It used to be that everyone who was non-speaking was thought to have minimal ability to understand language, since understanding and speaking are so linked in development. However, group at Boston University studied the largest group of non-speaking autistic individuals so far and discovered that about 25% of them understand more language than they can speak, although this ability is still far lower than those who are neurotypical. The other 75% understand about as much as they can communicate verbally. This indicates that in some cases, the ability to understand words and their meaning exceeds the ability to communicate those ideas verbally. Surprise surprise, just like everything autism – there are differences across the spectrum. Thanks to Yanru Chen at Boston University for explaining the study to us.

https://onlinelibrary.wiley.com/doi/10.1002/aur.3079

How to predict severe and dangerous behavior

On the first podcast of 2024, we describe a new paper in the Journal of the American Medical Association or JAMA which uses physiological measurements like heart rate and skin conductance to predict severe and dangerous behaviors, specifically aggression. If aggression can be predicted, it might be able to be prevented. It turns out aggression can be predicted up to 3 minutes before an episode occurs, in the future these measures can be used to possibly redirect aggression. In a separate study, the issue of stigma is addressed. There is an intense debate over “person first” vs. “identity first” language in autism, promoting recommendations of using one over the other because fear that person first language promotes stigma against autism. A new study shows that there is no added prejudice or fear using either person first or identity first language, but the stigma associated with schizophrenia is worse than it is for autism. What contributes to stigma? There is a wide range of experiences and perceptions of autism that need to be addressed. It’s not as simple as the language used.

https://pubmed.ncbi.nlm.nih.gov/38127348/

https://pubmed.ncbi.nlm.nih.gov/37965364/

The ASF Year End Review of Science

Just three days before 2024, ASF provides a summary of the the highlights of scientific discoveries and how they have translated into tools families can use. They include ways to speed up diagnosis and reduce waitlists, study of the brains in females and clinical recommendations for helping autistic females at birth, evidence of better practices around intervention and supports, and a review of the numbers of people who have a diagnosis. It isn’t comprehensive and if something was missed, our apologies, but the summary is 20 minutes.

You can read the text here: https://autismsciencefoundation.org/2023-year-end-review/

What’s the latest on minocycline for autism?

This week’s podcast re-explores a question about a potential therapy for autism – minocycline. Minocycline is an antibiotic used to treat a number of different infections and some anecdotal reports have linked it to an improvement of autism. This has led to some experimental trials on minocycline, with inconclusive results. This week, a multisite study showed NO effects of minocycline for autism features or outcomes, but that doesn’t mean it is NOT a great antibotic. If you need it, use it! Also, do autistic people spend too much time on their screens? Well, they seem to spend more time on devices and screens, but it might all be bad. Listen to the podcast for more information on this.

https://link.springer.com/article/10.1007/s10803-023-06132-1

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10709772/?report=printable

In support of AFAB

A recent publication in the Lancet was dedicated to clinical recommendations to support autistic females at birth. Because more males than females are diagnosed with autism, their needs are often misunderstood, misinterpreted, or just ignored. Researchers, clinicians, scientists, parents and self-advocates from around the world joined together to identify those needs and propose solutions that can be implemented in everyday care. To read the article in it’s entirety, click here: https://authors.elsevier.com/c/1i5LV8Mut2Mzvb

Waitlists for waitlists

Everyone who has looked for support for autism spectrum disorder is familiar with waitlists. Waitlists for evaluation, diagnosis, intervention, consultations and referrals. These waitlists prevent important opportunities for services and many groups developing technologies, policies, and approaches to reduce the waitlists or work around them. On this week’s podcast, we talk to Dr. Sharief Taraman from Cognoa to hear about their recent study on the scope of the problem on waitlists, what causes them, and how digital therapeutics may help them.

Nobody ever talks about catatonia

Nobody ever talks about catatonia in autism. This podcast explores the symptoms of catatonia, how to measure it, what parents should know about tracking the symptoms, what the treatments are, and what the causes are. Dr. Martine Lamy from Cincinnati Children’s Hospital explains her work looking at genetic causes in those with catatonia and neurodevelopmental disorders. It’s important to do genetic testing on all individuals who present with catatonia because this information led to better treatments in some people. Identifying a genetic cause of not just catatonia but also neurodevelopmental disorders like ASD gives families a community but also allows them to identify more targeted interventions.

https://pubmed.ncbi.nlm.nih.gov/37864080/

https://pubmed.ncbi.nlm.nih.gov/37642312/

https://pubmed.ncbi.nlm.nih.gov/36708735/

https://globalgenes.org/rare-disease-patient-services/

Contemplating “syndromic autism”

The words “syndromic autism” have been used to describe individuals with autism who also have a rare genetic mutation. Is it time to change those words to something else? Scientists and clinicians Drs. Jacob Vorstman and Steve Scherer from the University of Toronto share recent data in understanding autism, the role of genetic testing in autism in predicting and treating other conditions that someone with autism may have, and why the words “syndromic autism” may need to be updated to describe a subgroup of autism.

https://pubmed.ncbi.nlm.nih.gov/37330697/

Below is the Figure 1 that Dr. Scherer refers to:

Little Brains Answer Big Questions

This week we talk to Sergiu Pasca from Stanford University. He has revolutionized the field of understanding the field of brain development in neurodevelopmental disorders and just published a new study which examined the genetic influence of brain assembly. The way he does this is quite remarkable. His lab uses assembloids, which are many many many stem cells which form into a tiny brain. He explains what an interneuron is, why it is important for brain function, and how genetics can influence how these neurons work. This way the development of the brain from the first cell can be tracked and even manipulated to understand what happens in autism, and what therapies might be the most helpful to target these interneurons. Thank you Dr. Pasca.

Open access! https://pubmed.ncbi.nlm.nih.gov/37758944/